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Abstract
Programmable metamaterials for broadband vibration control draw growing interest due to their
abilities to tailor dynamic responses. However, the deterministic dynamic behavior of any
traditional metamaterial is a challenge to cope with the complex and variable vibration
conditions in real environments. This work proposes an adaptive piezoelectric metamaterial
beam (piezo-meta-beam) that consists of bimorph piezoelectric arrays. The shunt circuits are
designed with self-tuning abilities by integrating microcontroller-driven digital potentiometers
into synthetic inductive circuits. Two typical scenarios are considered, i.e., harmonic and white
noise excitations with different spectra. Different self-tuning strategies based on bandgap
prediction are contrapuntally developed. However, a flaw in the analytical bandgap expression
widely appearing in the literature is noted through a verification study. A modified bandgap
expression based on the 3D finite element model is proposed for correction. This modified
bandgap expression is adopted in formulating the control strategy of the microcontroller. A
series of experiments are conducted to investigate the adaptive behavior of the
piezo-meta-beam. In the harmonic sweep excitation test, the adaptive piezo-meta-beam shows
an ultra-broad attenuation zone (220–720 Hz), while the traditional counterpart only has a
bandgap width of less than 20 Hz. In the case of noise excitation, autonomous adjustment of the
center frequency and attenuation zone is achieved for noises over different spectra. In general,
this work presents a methodology for designing intelligent metamaterials that can adapt to
environmental vibrations with vast potential for real applications.
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1. Introduction

Low-frequency vibration has always plagued engineering
applications, especially for the lightweight and precision
structures widely utilized in modern aerospace/transportation
industries [1]. The demand for new vibration control tech-
niques has brought locally resonant metamaterial (metama-
terial, for short) into focus. The local resonance bandgap in
metamaterial allows wave attenuation in the sub-wavelength
scale [2], far outperforming conventional vibration/noise con-
trol solutions. By considering elaborately manufactured res-
onators, including but not limited to mass-spring chains [3–7],
mass-membrane resonators [8–10], Helmholtz resonators [11,
12], beam/plate-like resonators [13–15], a growing number
of innovative designs for metamaterial have been proposed.
The main limitation of these embodiments is the lack of
tunability. In other words, the bandgap behavior and other
physical characteristics are fixed once manufactured. Many
researchers attempted to address this challenge by introducing
reconfigurable/multistable structures into metamaterials. For
instance, origami-type metamaterials [16–18] exhibit multiple
stable states, and significant changes in physical properties are
achieved through internal configuration switching. Except for
origami, this concept has also been implemented by various
bistable resonators [19, 20]. Nevertheless, the above solutions
offer metamaterials only passive tunability, which depends on
many factors, such as the excitation frequency and amplitude.

Piezoelectric metamaterials are raised by integrating peri-
odic arrays of piezoelectric materials into host structures to
achieve tunable bandgaps [21]. Analogous to mechanical res-
onators, the shunt circuits in piezoelectric metamaterials can
be regarded as electromechanical resonators, and the elec-
tromechanical coupling-induced reaction force/moment leads
to local resonance. On this basis, bandgaps can be flexibly con-
trolled by changing external shunt circuits. Synthetic imped-
ance circuits (also known as semi-active circuits) [22] gen-
erally consist of passive analog electronics and operational
amplifiers (op-amps). They can emulate impedances beyond
nominal values of common electronic elements, thus, are
widely used in designing tunable piezoelectric metamaterials.
In addition to tunability, more superior bandgap properties
have also been achieved by using other synthetic impedance
circuits, including broad bandgap [23–25], multiple bandgaps
[26], and enhanced attenuation [27–29].

More recently, thanks to the advancement of digital con-
trol technology, digital synthetic impedance circuits (active
circuits) have attracted extensive attention. Digital control-
lers are introduced in the shunts. Theoretically speaking, any
arbitrary impedance can be emulated by the control law in
the controller. This makes piezoelectric metamaterials more
‘smart’ and versatile by virtue of these advanced shunting

strategies. Wang et al [30] experimentally validated the pro-
gramable piezoelectric metamaterial using a microcontroller
unit (MCU). The bandgap can be easily adjusted by purpose-
fully configuring the poles and zeros of the transfer func-
tion coded into the controller. With a similar ‘pole-zero’
approach, Sugino et al [31] investigated the tunability of a
digital piezoelectric metamaterial with shunt circuits imple-
mented by a field-programmable gate array. In addition, piezo-
electric metamaterials with cubic inductive [32] and nonlin-
ear capacitive [33] circuitries achieved by digital synthetic
impedance circuits have also been developed. For example,
Zhang et al [33] proposed a piezoelectric metamaterial with
nonlinear capacitor circuits. The construction of the nonlinear
capacitor involves emulating the inverse nonlinear relation-
ship between voltage and charge through digital controllers.
The amplitude-dependent bandgap created in the nonlinear
metamaterial provides a promising method to achieve broad-
band vibration suppression.

Overall speaking, the designs mentioned above allow the
dynamic responses ofmetamaterials to be programmed online.
Another significant merit of active shunt circuits is their poten-
tial to design adaptive bandgap behavior, which is bene-
ficial to broaden the vibration attenuation region. Li et al
[34] proposed a self-adaptive piezoelectric metamaterial using
digitally controlled resonators. They carefully programmed
the active shunt circuits connected to the piezoelectric ele-
ments (resonators). The effective stiffness of the resonator
could adaptively change with the excitation frequency, lead-
ing to an attenuation region three times wider than its pass-
ive counterpart. Silva et al [35] investigated a piezoelectric
metamaterial with self-tuning impedance circuits. An MCU
was employed to detect the square wave type excitation signal
and adjust the resonant circuit appropriately. An extra-broad
attenuation region was experimentally confirmed. It should be
mentioned that the above adaptive designs have a strict pre-
requisite that it is only applicable to harmonic excitations con-
taining a single frequency, which greatly limits its applica-
tion in complex vibration environments. Other experimental
research related to self-tuning/adaptive piezoelectric metama-
terials is very scarce.

In this paper, we present an adaptive piezoelectric metama-
terial with shunt circuits realized by integrating synthetic
impedance circuits and a digital controller for complex
vibration scenarios. A theoretical framework for adaptive
bandgap is provided, enabling the piezoelectric metamaterial’s
dynamic response to frequency-varying harmonic vibrations
and appropriately adjust when subjected to random vibra-
tions. Experimental studies demonstrate that an ultra-broad
vibration suppression is achieved for harmonic vibration. In
addition, the self-adaptivity of the bandgap for white noise
vibration with various spectra is experimentally validated.
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The proposed adaptive metamaterial is significant for apply-
ing structural vibration attenuation in a real-world vibration
environment. The paper is arranged as follows. Section 2 com-
mences with designing adaptive strategies for the shunt cir-
cuit to handle multiple vibration types. The transfer matrix
model of the piezoelectric metamaterial is also briefly intro-
duced. One defect yet to be overcome in the model of piezo-
electric metamaterial is pointed out in section 3, and a modi-
fied theoretical bandgap boundary expression is given. Based
on the modified expression, section 4 presents experimental
implementation of the control strategy and demonstrates the
autonomous attenuation zone adjustment of the piezoelec-
tric metamaterial under different types of vibration sources.
Concluding remarks of this work are summarized in section 5.

2. Theoretical foundation

This section presents the concept of the adaptive piezoelec-
tric metamaterial beam (piezo-meta-beam, for short). Focus
is devoted to designing the self-tuning strategy for imped-
ance circuits to allow the metamaterial system to respond
adaptively to different types of vibrations with optimal attenu-
ation. This section also briefly describes the dynamic model of
the uniform piezo-meta-beam. The identification of the vibra-
tion sources and circuit implementation will be presented in
section 4.

2.1. Piezoelectric metamaterial beam

The schematic diagram of the adaptive piezo-meta-beam sys-
tem is shown in figure 1(a). The system comprises 9 cells
(S = 9). The unit cell of the metamaterial beam is a compos-
ite beam consisting of a host beam and a pair of piezoelectric
transducers (PZT is used in this work) with opposite polariz-
ation directions, as shown in the enlarged view in figure 1(b).
The beam segment without PZT patches is denoted byα, while
the segment bonded with PZT patches is denoted by β. The
geometry and material parameters of the unit cell are listed in
table 1. Each pair of PZT patches is connected to a self-tuning
impedance circuit (serial-wire operation). Note that the imped-
ances of these circuits can be identical or different, and the
value(s) are adaptively determined according to the vibration
type. The cells are electrically independent, with a small gap lb
between the adjacent PZT patches to ensure insulation. Base
excitation is applied from one end of the beam.Only transverse
motion is considered during the bending vibration.

2.2. Self-tuning strategy for impedance circuit

Themechanical/electrical properties of the piezoelectric trans-
ducer change significantly when electrical resonance occurs
in the impedance circuit, forming the basis for opening the
local resonant (LR) bandgap [36]. From the point of view of
wave propagation, the bandgap refers to the frequency range
for which there is no real wavenumber at a given frequency.
Calculation of dispersion curves (i.e. wavenumber versus fre-
quency) by band structure analysis gives a clear indication of

the range of the bandgap. Since the vibration attenuation abil-
ity is attributed to the bandgap behavior, it is critical to fully
understand the factors affecting the bandgap before designing
the self-tuning strategy for the impedance circuit.

The three-dimensional (3D) constitutive equation of PZT
can be written in the form of [37][

D
S

][
εT d
dt sE

]
=

[
E
T

]
(1)

where D, S, E, T denote the tensorial representation of
the electrical displacement, strain, electrical field, and stress,
respectively. Equation (1) describes the coupling effect of the
applied force load and electric fields on the strain and elec-
trical displacements in PZT. Since only bending vibration is
considered in this work, all surfaces on the PZT are assumed
stress-free except for the 1 direction (material coordinate, in
which 1 and 2 correspond to the plane direction x and y, and 3
corresponds to the thickness direction z). Hence only the axis
strain of PZT in 1 direction is considered. The 3D constitutive
equation is simplified in the form of 1D, given by [38][

D3

S1

][
εT33 d31
d31 sE11

]
=

[
E3

T1

]
(2)

where d31 is the piezoelectric strain constant, εT33 is the per-
mittivity component at constant strain, and sE11 is the elastic
compliance at a constant electric field. In the 1D model, It can
be found that PZT is equivalent to a uniform material with in-
plane Young’s modulus Esc

p = 1/sE11.
Based on equation (2), the effective bending stiffness

of the composite beam within a unit cell can be calcu-
lated. According to the bandgap generation mechanism, LR
bandgaps appear when the effective stiffness is negative [36].
By letting the effective bending stiffness of a unit cell less
than zero, the bandgap bound of a uniform piezo-meta-beam
(i.e. the impedances in all shunt circuits are identical) can be
derived as [39]:

λ1ωLC < ω < λ2ωLC (3)

where λ1 =
√

1− k231
1+γ and λ2 =

√
1− k231

1+γ/(1−χ) . ωLC =

1/
√
LCS

p is the resonance frequency of the L-C oscil-

lation, and CS
p = εS33blp/(2hp) denotes the internal

capacitance of the PZT patch. εS33 = εT33 − d231/s
E
11 is

the permittivity component at constant stress. k31 =√
d231/

(
sE11ε

T
33

)
is the electromechanical coupling coefficient.

γ =
((
1− k231

)
Ebbhb

3)/(Esc
p b
[
(hb + 2hp)

3 − hb
3
])

denotes

the ratio of the bending stiffness of the host beam to the
PZT patch in the short circuit condition. χ = lp/(lb + lp) is
the coverage ratio of the PZT patch of one unit cell. From
equation (3), it can be found that the bandgap location can
be easily tuned by changing the resonance frequency ωLC.
Hereafter, the tuning criterion for the impedance circuit is
developed based on equation (3).
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Figure 1. Schematic of the adaptive piezo-meta-beam: (a) a finitely long piezo-meta-beam with self-tuning impedance circuits; (b)
illustration of a unit cell.

Table 1. Geometry and material properties of the piezo-meta-beam.

Host beam PZT patch

Material Aluminum Material PZT-5H
Thickness hb 1 mm Thickness hp 1 mm
Width b 30 mm Width b 30 mm
Length lb 5 mm Length lp 40 mm
Length Lb 405 mm Density ρp 7500 kg m−3

Density ρb 2700 kg m–3 Young’s modulus in short-circuit condition Esc
p 60.6 GPa

Young’s modulus Eb 69 GPa Piezoelectric coefficient e31 −16.61 C m−2

Permittivity εS33 2.5554 × 10−08 F m−1

To make the adaptive piezo-meta-beam applicable to the
real environmental vibration, two typical vibration excitations
are considered, namely, harmonic and band-limited white
noise vibrations.

For harmonic vibration, the optimal design is straightfor-
wardly to center the bandgap at the excitation angular fre-
quency ωh. By combining with equation (3), the L-C reson-
ance frequency ωLC should be tuned by:

ωLC = 2ωh/(λ1 +λ2) . (4)

Note that ωLC varies with the change of excitation fre-
quency ωh.

For the band-limited white noise vibration, as a typical ran-
dom vibration, its vibration energy remains constant over a
certain spectrum. For brevity, this noise is described as (ωc,
∆Ω), where ωc is the noise’s central angular frequency, and
∆Ω is the dominant spectrum. Two scenarios are considered.
First, when ∆Ω is narrower than the bandgap width, we can
still center the bandgap to the center frequency of the noise.
Similar to equation (4), we have

ωLC = 2ωc/(λ1 +λ2) . (5)

Second, when ∆Ω is wider than the bandgap width, the
attenuation capability of a piezo-meta-beam with identical
impedance circuits is insufficient to counteract the excitation.
To deal with it, the impedance circuits with gradually varying
inductances can be designed to produce an array of ‘graded’
L-C resonance frequencies ωLC, j, j = 1, 2,…, S. The metama-
terial with this design is also known as ‘graded metamater-
ial’, which is regarded as a promising approach for broad-
band vibration suppression [40, 41]. Here, a first-order grading
scheme [42] is adopted:

ωLC, j = ωLC,m+∆ω− 2∆ω

(
j − 1
S− 1

)
(6)

where ωLC, j denotes the resonance frequency of the jth imped-
ance circuit. ωLC,m corresponds to the resonance frequency of
the circuit that is shunted to the middle PZT patches. |2∆ω|
denotes the frequency spacing between the resonance frequen-
cies of the 1st and Sth circuits. The positive/negative ∆ω cor-
responds to the descending/ascending order of the resonance

4
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frequency array ωLC, j. According to the conclusion drawn in
[42], the descendingmode exhibits better attenuation perform-
ance, which will be used in this work.

By combining equation (6) with equation (3), the bandgap
bound of the piezo-meta-beam in the grading configuration is
expanded to:

λ1 (ωLC,m−∆ω)< ω < λ2 (ωLC,m+∆ω) . (7)

Similar to the previous cases, we locate the center of the
bandgap to the center frequency ωc of the noise:

(λ1 +λ2)ωLC,m+(λ2 −λ1)∆ω

2
= ωc. (8)

Obviously, when the bandgap width is wider than the dom-
inant spectrum∆Ω of the noise, the excess attenuation region
is unnecessary. Therefore, the bandgap width of the graded
piezo-meta-beam is constrained to be equal to ∆Ω, yields:

(λ2 −λ1)ωLC,m+(λ1 +λ2)∆ω =∆Ω. (9)

By simultaneously solving equations (8) and (9), ωLC,m and
∆ω can be calculated as:

ωLC,m =
2(λ1 +λ2)ωc− (λ2 −λ1)∆Ω

4λ1λ2
;

∆ω =
−2(λ2 −λ1)ωc+(λ1 +λ2)∆Ω

4λ1λ2
. (10)

Substituting equation (10) into equation (6) gives the res-
onance frequency of each impedance circuit:

ωLC,j = κ1ωc+κ2∆Ω, j = 1, 2, . . . ,S (11)

where κ1 =
[
2(λ1 +λ2)− 2(λ2 −λ1)

(
S−2j+1
S−1

)]/
(4λ1λ2),

κ2 =
[
(λ1 +λ2)

(
S−2j+1
S−1

)
−λ2 +λ1

]/
(4λ1λ2). Note that

the designed ωLC, j varies with the change of the center fre-
quency ωc and dominant spectrum ∆Ω of the noise excita-
tion. By properly tuning the impedance circuits according to
equations (4), (5) or (11), the piezo-meta-beam can adapt to
different vibration sources.

2.3. Dynamic model with transfer matrix method (TMM)

Owing to the periodicity of the metamaterial, the frequency
response characteristics of the piezo-meta-beam can be easily
calculated by the TMM. The TMMmodel of a traditional uni-
form piezo-meta-beam has been extensively studied [43, 44].
Here, a brief introduction of the TMM model is given, and
its results will be used as a reference during the discussion in
section 3.

For the slender beam considered in this paper, the Euler–
Bernoulli theory can be applied. The governing equation of
the transverse motion w(x, t) of the piezo-meta-beam can be
written as

∂2

∂x2

[
D(x)

∂2w(x, t)
∂x2

]
+m(x)

∂2w(x, t)
∂t2

= 0 (12)

where D(x) and m(x) are the flexural rigidity and the mass per
unit length of the piezo-meta-beam, respectively. For the jth
unit cell, D(x) and m(x) are in the form of

D(x) =


Dα = Ebbhb

3/12,0⩽ x< lb
Dβ = Ebbhb

3/12+Ep (ω)b

×
[
(hb + 2hp)

3 − hb
3
]
/12, lb ⩽ x< lb + lp

m(x) =

{
mα = ρbbhb,0⩽ x< lb
mβ = ρbbhb + 2ρpbhp, lb ⩽ x< lb + lp

where the equivalent Young’s modulus of the jth PZT trans-
ducer when shunted to the impedance circuit Z(ω) is [45]

Ep (ω) =
Esc
p(

1− k231
) (1− k231

1+ iωCS
pZ(ω)

)
. (14)

The physical meanings of all symbols are given in table 1.
The steady-state response of w(x, t) in the jth unit cell is
assumed to be

w(x, t) =W(x)eiωt. (15)

The general solution of the mode shape function W(x) in
the jth unit cell can be written as

Wj, i (x) =HiΨ j, i (16)

where i=α, β.Hi = [cos(kix) ,sin(kix) ,cosh(kix) ,sinh(kix)]
is the matrix with known parameters related to x. Ψ j, i =

[Āj, i, B̄j, i, C̄j, i, D̄j, i]
T
is the coefficient vector to be determined.

Considering the continuity conditions of the transverse dis-
placement, angular displacement, bending moment, and shear
force at the interface between segment ( j, α) and ( j, β), and
the continuity conditions at the interface between segment ( j,
β) and (j+ 1, α), the transfer relationship between the jth and
(j + 1)th segment can be obtained as

Ψ j+1,α = TjΨ j,α (17)

where the transfer matrix is:

Tj =Hα(0)
−1Hβ (lp)Hβ(0)

−1Hα (lb) . (18)

By repeating the above procedures, the transfer relation
between the left end of the 1st segment and the right end of
the Sth segment can be obtained as

Ψ S,β =HS,β(0)
−1HS,α (lb)

(
j=1∏
S−1

Tj

)
Ψ 1,α. (19)

Then, by considering a unit harmonic displacement
u0(t)= eiωt excitation is input from the clamped end and apply-
ing the clamped-free boundary condition to the piezo-meta-
beam, the coefficient vectorΨ S,β can be calculated. Thus, the
transmittance of the piezo-meta-beam can be obtained as

τ (ω) = 20log10

∣∣∣HS,β(lp)1, :Ψ S,β

∣∣∣ (dB) (20)

5
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Figure 2. (a) Comparison of the transmittance responses of the uniform piezo-meta-beam calculated by TMM, 1D FE model, and 3D FE
model. In addition, the bandgap estimated by equation (3) is shaded in orange for comparison; (b) the variation of the bandgaps obtained by
the 3D FE model and equation (3) with the variation of impedance L.

where the subscript 1,: stands the 1st row ofHS,β(lp). τ (ω)< 0
dB signifies a dampening of vibration. It is important to note
that, due to the bandgap’s definition based on an infinitely long
structure, strictly speaking, the transmittance calculated from
a finite-length structure can only approximately capture the
bandgap. Fortunately, when a sufficient number of unit cells
is present (generally exceeding six [38]), the bandgap range
identified through the transmittance response closely aligns
with that obtained from the dispersion relation. Hereafter, a
lenient definition is employed to roughly pinpoint the bandgap
range. Specifically, the bandgap is considered to be achieved
when τ (ω)<−2 dB.

3. Issue in 1D piezoelectric constitutive equation
and correction for bandgap

Since the self-tuning strategy highly depends on predicting the
TBG,(for short), it is crucial to verify the accuracy of the TBG
expression (i.e. equation (3)) first. The TBG expression was
derived based on the simplified 1D piezoelectric constitutive
equation. Although it has been widely used as a tuning cri-
terion for many LR piezoelectric metamaterials [38, 46, 47],
its verification through simulation/experiment is still lacking
in the literature.

To this end, a corresponding finite element (FE) model
of the uniform piezo-meta-beam is built in COMSOL
Multiphysics to conduct a verification study. The default
material properties of the piezoelectric material (PZT-5H
adopted in this paper) in COMSOL are described by

εS =

εS11 0 0

0 εS11 0

0 0 εS33

 , d=

 0 0 0

0 0 0

d31 d31 d33

0 d15 0

d15 0 0

0 0 0

 .

(21)

Since the PZT is polarized in the z-direction and elec-
trodes are assumed to be perfectly conductive, there is no elec-
tric field in the 1 and 2 directions, implying εS11 = 0. Given
the plane-stress assumption in the simplified 1D constitutive
equation of the piezoelectric patch, the shear deformation and

rotary inertia of the cross-section are neglected, implying that
the shear and longitudinal modes-related piezoelectric coeffi-
cients, d33 = d15 = 0. Finally, the material properties of the
PZT patch in COMSOL are modified to the form:

εS =

 0 0 0
0 0 0
0 0 εS33

 , d=

 0 0 0
0 0 0
d31 d31 0

0 0 0
0 0 0
0 0 0

 .
(22)

For the convenience of distinction, the FE model of the
piezo-meta-beam with default PZT’s material properties is
named the 3D FE model, while that with the modified proper-
ties is named the 1D FEmodel. As an example to show the dif-
ference between 1D and 3D FE models, we set the impedance
L = 10.3 H (i.e. LC resonance frequency fLC = 400 Hz), and
other parameters are the same as those in table 1. Figure 2(a)
compares the tip transmittances of the uniform piezo-meta-
beam calculated by the 1D and 3D FE models. The analyt-
ical results from the TMM model and the TBG estimated by
equation (3) are also plotted in figure 2(a) for comparison.
The dashed green line corresponds to τ (ω) =−2 dB is plot-
ted in figure 2(a) as a reference. Note that the transmittance
where τ (ω)<−2 dB(i.e. the valley) indicates the bandgap. It
is observed that the 1D FE model is in good agreement with
the TMMmodel. In addition, the TBG by equation (3) (orange
area) also matches the bandgap (i.e. the valley of the transmit-
tance) predicted by the TMM and 1D FE models.

However, it is noted that the bandgap region in the trans-
mittance of the 3D FE model shifts to a 12% higher frequency
and becomes 129% wider. This phenomenon was also noted
in a previous experiment [35] and attributed it to the variation
of component parameters in actual shunt circuits. However,
the parameters of the impedance circuits in this FE simu-
lation are ideal, which means there is no circuit parameter
error. Figure 2(b) compares the variation of the TBG and the
bandgap calculated by the 3D FE model when the impedance
of the shunt circuit varies. It is noted that the bandgap calcu-
lated by the 3D FE model is always above and broader than
the TBG. The potential reason might be that the estimated
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Figure 3. (a) Experimental setup for testing the adaptive piezo-meta-beam; (b) circuit diagram of the synthetic inductor; (c) illustration of
the digital potentiometers controlled by the microcontroller.

piezoelectric patch’s capacitance CS
p based on the 1D piezo-

electric constitutive equation is under the assumption of a
fully clamped constraint. However, the actual capacitance of
a piezoelectric patch is affected by its boundary conditions.
For the piezoelectric patches glued on the clamped-free piezo-
meta-beam, their capacitance values should be smaller thanCS

p
since they are loosely constrained. In this case, the piezoelec-
tric patch in the 3D FE model is considered as a more accur-
ate representation of the actual piezoelectric patch, which is
why the 3D FE model always exhibits higher bandgap fre-
quencies. However, it should be emphasized that variations
in capacitance may be only one of the main factors contrib-
uting to the bandgap discrepancy. Different boundary condi-
tions arising from the simplified 1D piezoelectric constitutive
equations will also change the piezoelectric coupling strength,
which in turn affects the bandgap. In addition, other factors,
such as the drift of synthetic inductance and the temperature
of transducers, will also affect the bandgap range in practical
applications.

To match the bandgap estimated by the 3D FE model, a
correction is made for equation (3) as

λ̄1ωLC < ω < λ̄2ωLC (23)

where λ̄1 = 1.1115
√
1− k231

1+γ and λ̄2 = 1.1363√
1− k231

1+γ/(1−χ) . The modified theoretical bandgap is named
MTBG. The parameters in the tuning criterion (equation (4),
(5) and (11)) are, thereby, updated accordingly. It should be
pointed out that using experimental results to correct the TBG

or discarding the TBG and using experimentally based numer-
ical bandgaps to guide the bandgap design are both relatively
simple approaches. However, the use of the 3D FE model to
correct TBG is more versatile, especially for some studies that
lack experiments.

4. Experiment

4.1. Experimental setup

A series of experiments are carried out to validate the adapt-
ive vibration suppression capability of the proposed piezo-
meta-beam system when subjected to different types of vibra-
tion sources. A piezo-meta-beam made of an aluminum host
beam and 9 bimorph piezoelectric elements (PZT-5H)was fab-
ricated and clamped vertically, as shown in figure 3(a). The
internal capacitance C exp

p of the PZT patches was measured to
be 15.6 nF. Electrically insulative epoxy was used to glue the
PZT patch to the aluminumbeam.Details on the geometric and
material parameters used for this prototype have been given in
table 1. The clamped end of the piezo-meta-beam is fixed to the
armature of an electromagnetic shaker. Acceleration responses
at the excitation and free-end points of the beam are acquired
by the attached accelerometers. An overview of the experi-
mental setup is shown in figure 3(a). The self-tuning imped-
ance circuits, presented in the blue dashed box in figure 3(a),
were implemented by synthetic inductors and a microcontrol-
ler. The advantage of the synthetic inductor over the bulky
passive inductor lies in the smaller additionalmass and internal
resistance. The circuit diagram of the synthetic inductor is
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Table 2. Resistance value of R2 for different frequency ranges of excitation.

200 ∼ 240 Hz 240 ∼ 320 Hz 320 ∼ 400 Hz 400 ∼ 560 Hz 560 ∼ 700 Hz

R2 1100 Ω 1400 Ω 2400 Ω 4000 Ω 4500 Ω

Figure 4. Global architecture of the self-tuning impedance circuit.

shown in figure 3(b). The equivalent impedance of the syn-
thetic inductor can be calculated by [48]

L=
R1R3R4

R2
C1. (24)

In the experiment, R1 = R3 = 10 kΩ, and C1 = 100 nF are
used. The type of op-amp is LM358. To achieve impedance
self-tuning, the digital potentiometer (POT) (MCP41HV31-
502) ranging from 0 ∼ 5 kΩ is utilized for R4, as shown in
figure 3(c).

Through SPI serial interface, the resistance value of the
digital POT can be controlled by the microcontroller, as
given by

R4 =
R2ω

2
LC

R1R3C1C
exp
p

(25)

where ωLC is the target L-C resonance frequency of each shunt
circuit, which is calculated by equations (4), (5) or (11). The
tuning strategy selection depends on the detected excitation
type and is conducted by the microcontroller. The digital POT
used has a 7-bit encoding ability, implying a resolution of
5000/128Ω. The POT’s resolution is critical because it directly
determines the minimum frequency spacing when adjusting
the bandgap. In addition, as shown in figure 2(b), the bandgap
variation in higher frequency is more sensitive to the imped-
ance change. Therefore, the digital POT’s one-step adjustment
will more easily cause an undesirable change in bandgap loca-
tion at high frequency. To minimize the bandgap location vari-
ation when R4 changes, R2 in the synthetic inductor circuits is
also implemented by a digital POT, whose value is carefully
designed for the interested frequency range of excitation, as
given in table 2. In summary, a total of 2 × 9 digital POTs
are used. The 9 digital POTs for constituting R4 are controlled
independently, while the other 9 digital POTs for making up
R2 share the same command pins. A high-performance com-
mercial development board (Portenta H7) is employed to con-
trol the digital POTs and detect the excitation frequency. This

microcontroller is configured with 15 DAC channels of up to
16-bit to guarantee the requirements of digital POT control.

For the part of tuning strategy selection, the harmonic
or white noise excitation signal is fed into the ADC chan-
nel of the microcontroller. The frequency components and
the corresponding amplitudes are calculated in real-time by
the Fast Fourier Transform (FFT) inside the microcontroller.
The first n frequency components (ωi, i = 1, 2, …, n) with
the largest amplitude Ai are extracted in descending order
of their amplitudes. Generally, the excitation is a harmonic
signal if the amplitude of the first frequency component is
much larger than others, i.e. A1 ≫ A2. In contrast, the excit-
ation will be assessed as white noise if multiple comparable
frequency components evenly distribute over a certain spec-
trum, e.g. A1 ≈ A2. Therefore, the discrepancy between A1 and
A2 is used as a criterion to distinguish the excitation types.
Subsequently, according to the identified excitation, differ-
ent tuning strategies will be chosen to determine the digital
POT’s value to make the shunt circuit adaptable. Moreover,
in the case of white noise, additional required values, i.e. the
center frequency ωc and the dominant spectrum ∆Ω are
calculated by:

ωc =
1
n

n∑
i=1

ωi, ∆Ω=max(ωi)−min(ωi). (26)

The global architecture of the self-tuning impedance circuit
is shown in figure 4.

It is worth mentioning that the accuracy of the excitation
frequency calculated by FFT depends on the sampling number
N. However, a large N requires large memory in the microcon-
troller. Fortunately, the Portenta H7 commercial board has up
to 8 Mbytes of RAM, and the embedded STM32H747 pro-
cessor has a clock speed of 480 MHz, which can ensure the
implementation of high-point FFT and fast response to the
excitation signal. In the experiments, the number of samples
is set to N = 215 and n = 60 (i.e. the first 60 frequency com-
ponents are extracted). Tests on harmonic signals show that
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Figure 5. Comparison between the transmittances of the uniform piezo-meta-beam with the synthetic inductor impedance circuits from the
experiment and 3D FE model: (a) L = 24.2 H; (b) L =10.4 H; (c) L = 5.4 H. The measured transmittance of the uniform piezo-meta-beam
when all the impedance circuits are short-circuited is also plotted as a reference.

the FFT process takes a computation time of around 600 ms,
with a relative error of 0.05%.

4.2. Results and discussion

4.2.1. Validation of 3D FE model. Firstly, we validate the 3D
FE model of the piezo-meta-beam. The self-tuning feature in
the synthetic inductor circuit is momentarily disabled. Digital
POTs having identical resistances are set manually. In other
words, the adaptive piezo-meta-beam degenerated into a con-
ventional uniform piezo-meta-beam. Figure 5 compares the
experimentally measured transmittance responses of the uni-
form piezo-meta-beam with the results from the 3D FE simu-
lation. Three inductances L, i.e. L = 24.2 H, L = 10.4 H, and
L = 5.4 H, are considered to make the piezo-meta-beam gen-
erate bandgaps around its modal peaks. It is observed that the

measured bandgap locations generally agree with those cal-
culated by the 3D FE model, albeit the intensity of the meas-
ured attenuation regions is weaker than the simulational pre-
dictions. The weaker attenuation performance in practice is
unavoidable, and many factors could be responsible for it. The
two most possible reasons are: (1) The PZT patches are not
perfectly glued on the host beam. The epoxy layer leads to a
weak electromechanical coupling between PZT and the beam
and introduces large damping at the same time; (2) The elec-
trical damping induced by the parasitic resistance in the real
synthetic circuit.

It is also found that the measured frequency response dif-
fers from that of the 3D FEmodel, and this difference becomes
more pronounced at high frequencies. Various factors may
contribute to this discrepancy, including the relatively loose
clamping condition in the prototype, the variation in the mass
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Figure 6. Variation of the center frequency of bandgap with the change of impedance L. Note that the blue line represents that from the
prediction of the 3D FE model, and the purple line represents that from the experimental measurement.

of the host beam caused by the uneven distribution of density,
and the additional mass introduced by the epoxy layer. Note
that for vibrating systems, in general, the effect of changes
in mass on the frequency response becomes more signific-
ant as the frequency increases [49]. A possible improvement
is to conduct parametric identifications for the piezoelectric
metamaterial beam in the short/open circuit condition. Similar
studies can be found in [50, 51]. The 3D FE model is then
tuned according to the experimentally identified results. This
is expected to improve the accuracy of the FE model in estim-
ating the frequency response beyond the bandgap. However,
from figure 5, it is evident that the 3D FE model provides a
sufficiently accurate bandgap estimation, which is enough to
realize the focus of this study, i.e., the automatic tuning of the
bandgap. The work on parameter identification can be left for
future improvement.

For several more validation cases, figure 6 compares the
center frequencies of the bandgap obtained by the 3D FE
model and experiment. It can be seen that the bandgap loca-
tions obtained by the two ways are generally consistent (max-
imum relative error in the range of interest: 1.7%), implying
that the error of MTBG (i.e. equation (23)) is within the accep-
ted range and the tuning strategies based on MTBG are reli-
able. To the authors’ best knowledge, this is the first exper-
imental validation for the bandgap location of the uniform
piezo-meta-beam. It is also found that the bandgap of the con-
ventional piezo-meta-beam is narrow, with a width of only
10 Hz–20 Hz. Hereafter, the self-tuning strategy in the shunt
circuit is activated, and the adaptive behavior of the piezo-
meta-beam is studied under different excitations.

4.2.2. Autonomous tuning under harmonic sweep excitation.
To investigate the performance of the adaptive piezo-meta-
beam under harmonic excitation, a harmonic sweep excita-
tion with a sweeping rate of 2 Hz s−1 is exerted on the clamp

Figure 7. The experimentally measured transmittance response of
the adaptive piezo-meta-beam when subjected to a harmonic sweep
excitation with the sweeping rate of 2 Hz s−1. The transmittance of
the piezo-meta-beam in the short circuit condition is also shown for
reference.

end of the piezo-meta-beam. According to the FFT analysis
in the control unit, the harmonic wave-related tuning strategy
will be automatically selected. Figure 7 shows the transmit-
tance response of the adaptive piezo-meta-beam. As a refer-
ence, the transmittance of the piezo-meta-beamwhen all shunt
circuits are shorted is also plotted in figure 7. It can be seen
that the original three modal peaks of the piezo-meta-beam
are suppressed with an ultra-broad attenuation zone achieved,
as shaded in orange ranging from 220 to 720 Hz (bandwidth
of 500 Hz). It should be pointed out that the wide atten-
uation zone is not a bandgap. Precisely, it is produced by
the automatic adjustment of the original narrow bandgap of
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Table 3. Predefined spectra of the white noise excitation used in the studied cases.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Center frequency f c 275 Hz 418 Hz 580 Hz 580 Hz 580 Hz 580 Hz
Dominant spectrum ∆f 10 Hz 14 Hz 20 Hz 60 Hz 80 Hz 160 Hz

the uniform piezo-meta-beam as the excitation frequency var-
ies. One can observe that the attenuation profile is not flat.
This is because of the tiny difference between MTBG and
the measured bandgap, resulting in the center of the bandgap
adjusted based on equation (4) not being perfectly alignedwith
the excitation frequency. The enlarged view of the attenuation
region in figure 7 further displays the adjustment of the narrow
bandgap, in which the sawtooth-like curve is due to the overlap
of the bandgap in one adjustment. Recall that the adjustment
frequency relies on the digital POT’s resolution, and the higher
this frequency, the more accurate the bandgap repositioning.

4.2.3. Autonomous tuning under band-limited noise
excitation. The harmonic vibration can be regarded as a
particular limit case of environmental vibration. Aiming to
meticulously test the adaptive vibration suppression capacity
of the piezo-meta-beam under random vibration conditions,
we designed six white noise excitation cases with different
spectra, as summarized in table 3.

The predefined white noise excitation can be generated
by the vibration controller VR9500, and the power spectral
density (PSD) of the excitation for all six cases is set to
0.001 G2 Hz−1, where G stands for gravitational accelera-
tion. In cases 1–3, multiple frequency components are detec-
ted by the FFT computation in the control unit. Based on
equation (26), the calculated center frequencies are 273.6 Hz,
421.3 Hz, and 578.1 Hz, respectively. The calculated dom-
inant spectrums are 10.2 Hz, 12.8 Hz, and 18.6 Hz, respect-
ively, which are narrower than the associated MTBG (i.e.
11.2 Hz, 17.0 Hz, 23.6 Hz, respectively). Therefore, the con-
trol unit will choose the white noise-related tuning criterion
(equation (5)) in accordance with the algorithmic procedure
shown in figure 4. Results for cases 1–3 are depicted in row
(I–III) of figure 8, correspondingly. Column (a) in figure 8 dis-
plays the acceleration signal at the beam tip of the adaptive
piezo-meta-beam during 30 s of excitation. A large acceler-
ation can be observed in the initial phase. A significant drop
in acceleration afterward indicated that the bandgap had been
properly tuned after a short period of FFT calculation and
digital POT setting. Column (b) in figure 8 further compares
the PSD at the beam tip before and after bandgap tuning. As
can be seen, once the bandgap is adaptively tuned, the PSD
in the frequency range of the noise excitation is significantly
reduced. Additionally, to quantify the time domain results, the
root-mean-square (RMS) values of the tip acceleration sig-
nal are calculated and shown in column (c) in figure 8. The
acceleration signals related to the marked RMS values are

superimposed on the column plot (c). It is observed that for
cases 1–3, the RMS accelerations are maintained at a very
low value (<0.1 G) after adaptively tuning. In summary, the
studies in cases 1–3 demonstrate that the adaptive piezo-meta-
beam can effectively handle the noise excitation with a nar-
rower dominant spectrum than the MTBG.

In cases 4–6, the detected dominant spectrums (i.e. 63.5 Hz,
78.4 Hz, and 157.7 Hz, respectively) by the FFT computa-
tion are broader than the MTBG at the corresponding center
frequency. According to the algorithmic procedure shown in
figure 4, the microcontroller will implement the tuning cri-
terion equation (11), to achieve the ‘graded’ synthetic induct-
ors design. Results for cases 4–6 are, respectively, depicted
in row (I–III) of figure 9. From figures 9(I-a) and (II-a),
one can still see an apparent decrease in the acceleration
signal.

However, for the noise excitation with a 160 Hz domin-
ant spectrum (case 6), the vibration suppression is relatively
inappreciable, as shown in figure 9(III-a). The reason can be
found in the PSD analysis in figure 9(b). The PSD curves
after tuning in figures 9(I-b) and (II-b) display clear vibration
attenuation regions (i.e. valleys) that encompass the frequency
range of the associated noise excitation (i.e. 550–610 Hz, 540–
620 Hz, respectively), which confirms that the original nar-
row bandgap is expanded after adopting the grading design-
based tuning strategy. However, the attenuation region in the
after-tuning PSD curve of figure 9(III-b) does not cover the
frequency range of the noise excitation (500–660 Hz). Recall
that the tuning strategy of equation (11) depends on the domin-
ant frequency∆f, while the width∆f = 160 Hz drives a large
frequency spacing of the L-C resonance frequency arrayωLC, j,
resulting in over-tuning of the graded inductance. According
to the result reached in [40], the over-tuning of the graded
metamaterial may cause the vibration attenuation regions to
be too dispersed in the frequency spectrum or even disappear.
As a result, a limitation of the adaptive piezo-meta-beam is its
difficulty in dealing with noise excitations with broad dom-
inant spectra. Hence, figure 9(III) presents an example of an
over-tuned case. In addition, the RMS acceleration histories
of the tip acceleration signal for cases 4–6 are given in column
(c) in figure 9. Again, the poorest performance is observed in
figure 9(III-c). In particular, the subplot of the acceleration sig-
nal corresponding to the green marker points shows that there
is almost no attenuation effect for certain frequency compon-
ents. It should be noted that metamaterials exhibit sensitivity
to random vibrations, necessitating the use of a very accur-
ate model to precisely predict random vibration responses and
prevent significant errors. However, as previously mentioned,
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Figure 8. Rows (I) to (III) respectively plot the results when the noise excitations of cases 1–3 are applied. Column (a) presents the
time-domain acceleration signal at the tip end of the adaptive piezo-meta-beam during 30 s of excitation. Column (b) compares the PSD at
the tip of the adaptive piezo-meta-beam before (blue line) and after (purple line) the adaptive adjustment of the bandgap. Column
(c) presents the evolution of the RMS accelerations at the tip of the adaptive piezo-meta-beam. In addition, the slices of the time domain
signals corresponding to the marked RMS value are superposed on the plots in column (c).

existing models based on the 1D piezoelectric constitutive
equation exhibit notable limitations, and a highly accurate
model for piezoelectric metamaterials is not yet built in the
literature. Therefore, the future pursuit of random vibration

studies needs to incorporate the random vibration theory and
consider the 3D piezoelectric constitutive equations in the the-
oretical model, thus paving the way for improved suppression
strategies for dealing with random excitations.
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Figure 9. Rows (I) to (III) respectively plot the results when the noise excitations of cases 4–6 are applied. Column (a) presents the
time-domain acceleration signal at the tip end of the adaptive piezo-meta-beam during 30 s of excitation. Column (b) compares the PSD at
the tip end of the adaptive piezo-meta-beam before (blue line) and after (purple line) the adaptive adjustment. Column (c) presents the
evolution of the RMS accelerations at the tip of the adaptive piezo-meta-beam. In addition, the slices of the time domain signals
corresponding to the marked RMS value are superposed on the plots in column (c).

5. Conclusions

This paper has proposed an adaptive piezoelectric metamater-
ial beam (piezo-meta-beam) with self-tuning impedance cir-
cuits. It can automatically adjust its dynamic response when
subjected to different types of excitations. Two bandgap tun-
ing strategies are designed to handle two typical vibration
scenarios: harmonic vibration and white noise vibration over
a certain dominating spectrum. The key concept of the self-
tuning impedance circuit is to replace physical resistors with
microcontroller-driven digital POTs in the synthetic inductor
circuits. A control architecture based on designed tuning
strategies is developed and executed by a microcontroller.

The vibration type is also identified by an algorithm based
on the FFT analysis processed by the microcontroller. The
tuning strategies are based on matching the band gap with
the detected excitation frequency. Therefore, band gap pre-
diction accuracy directly determines the robustness of tun-
ing strategies. The bandgap boundary expression (TBG) was
first revisited and verified by comparing the TMM, 1D FE,
and 3D FE models. A significant discrepancy in the TBG was
noticed. A modified bandgap boundary expression (MTBG)
was then proposed. The MTBG results agreed well with the
experimental results. An adaptive piezo-meta-beam prototype
was fabricated and experimentally tested. For the harmonic
excitation, it was found that the bandgap was smoothly tuned
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autonomously when the excitation frequency varied, leading
to an ultra-broad attenuation bandwidth (220–720 Hz) that
could cover three intrinsic resonant peaks of the piezo-meta-
beam. For the white noise excitation, we also validated that
the bandgap adaptively adjusted according to the identified
excitation spectra, allowing the attenuation zone to cover the
dominating noise excitation spectrum. Generally speaking,
the proposed piezo-meta-beam exhibited high flexibility and
intelligence in coping with realistic and complex vibration
scenarios.
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